Surface Extraction from Volumetric Images Using Deformable Meshes: A Comparative Study

نویسنده

  • Jussi Tohka
چکیده

Deformable models are by their formulation able to solve surface extraction problem from noisy volumetric images. This is since they use image independent information, in form of internal energy or internal forces, in addition to image data to achieve the goal. However, it is not a simple task to deform initially given surface meshes to a good representation of the target surface in the presence of noise. Several methods to do this have been proposed and in this study a few recent ones are compared. Basically, we supply an image and an arbitrary but reasonable initialization and examine how well the target surface is captured with different methods for controlling the deformation of the mesh. Experiments with synthetic images as well as medical images are performed and results are reported and discussed. With synthetic images, the quality of results is measured also quantitatively. No optimal method was found, but the properties of different methods in distinct situations were highlighted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Optimization of Deformable Surface Meshes Based on Genetic Algorithms

Deformable models are by their formulation able to solve surface extraction problem from noisy volumetric image data encountered commonly in medical image analysis. However, this ability is shadowed by the fact that the minimization problem formulated is difficult to solve globally. Constrained global solutions are needed, if the amount of noise is substantial. This paper presents a new optimiz...

متن کامل

Global optimization-based deformable meshes for surface extraction from medical images

This thesis deals with surface extraction from noisy volumetric images, which is a common problem in medical image analysis. Due to noise, the use of a-priori information about surface topology and shape is necessary for automatic surface extraction methods. Deformable surface models can incorporate such geometric knowledge into extraction process which is restated as an energy minimization pro...

متن کامل

Surface Simplex Meshes for 3D Medical Image Segmentation

Medical image segmentation is often a diicult task due to the low contrast, the low signal/noise ratio and the presence of outliers in images. However, it remains a critical issue for image interpretation, pattern recognition and automatic diagnosis. Deformable models are well-suited for capturing the geometry and the shape variability of anatomical structures from medical images. Indeed, they ...

متن کامل

A non-self-intersecting adaptive deformable surface for complex boundary extraction from volumetric images

This paper proposes a non-self-intersecting multiscale deformable surface model with an adaptive remeshing capability. The model is specifically designed to extract the three-dimensional boundaries of topologically simple but geometrically complex anatomical structures, especially those with deep concavities such as the brain, from volumetric medical images. The model successfully addresses thr...

متن کامل

Comparative analysis of remote sensing water indexes for wetland water body monitoring using Landsat images and the Google Earth Engine Platform0 (A Case study: Meighan Wetland, Iran)

Wetlands are dynamic and complex aquatic ecosystems that play an important role in the survival of many plant and animal species. This study modeled the spatio-temporal changes of the Arak Meighan wetland during 1985–2020 using the multi-temporal Landsat images. In doing so, the applicability of different satellite-derived indexes including NDVI, NDWI, MNDWI, AWEIsh , AWEInsh , and WRI was inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002